Contents
1. Study Area & Overall Research Aims ... 2
2. Itinerary .. 3
3. Research Objectives, Activities & Schedule at Somkhanda Reserve ... 3
4. African Wildlife Management Course .. 6
5. Dive Training at Sodwana Bay .. 8
6. Indian Ocean Reef Ecology Course ... 9
7. Academic Benefits ... 11
8. Additional Reading ... 13
1. Study Area & Overall Research Aims

South Africa is the best place in the world if you want to learn about how to make wildlife conservation work financially. Income from game management and ecotourism revenue has meant that there is an ever-expanding network of game reserves that also benefit much other wildlife besides the game species. This booklet will focus on the terrestrial and marine combined expedition involving a week in Somkhanda Community Game Reserve, followed by a week diving at Sodwana. Note there are other sites on the map of research sites in South Africa (Figure 1) where university students are helping with related studies in other reserves.

Figure 1. Location of the terrestrial sites – Somkhanda and Gondwana Game Reserves - and the marine camp – Sodwana Bay, and the relevant airports.

Somkhanda Community Game Reserve is a community owned Big 5 game reserve that stretches across 12 000 hectares of natural Zululand Bushveld. This majestic reserve, which was formally proclaimed as a Nature Reserve in 2011 is not only the first community owned game reserve that introduced the critically endangered black rhino as part of the WWF Black Rhino Range Expansion Program, but it is also home to the critically endangered African wild dog.

Apart from using the reserve as an economic engine for the neighbouring and beneficiary communities through sustainable tourism and resource utilization practices it places nature conservation as its core value. Somkhanda Community Game Reserve contributes significantly towards both local and metapopulation conservation management programs and has contributed towards the establishment of viable populations of black rhino and wild dog at various other protected area across Africa.

Apart from the healthy rhino and wild dog populations, the Somkhanda Community Game Reserve also offers a safe and stable environment to leopard, lion, spotted hyena, brown hyena, caracal, serval, elephant, buffalo, giraffe, blue wildebeest, zebra, nyala, bush buck, red duiker and a variety of typical bushveld game. As a result of these achievements, Somkhanda Community Game Reserve is promoted as a flagship project for land restitution and transformation in South Africa, as well as an example of conservation-based community development.
Given the mass investment in wildlife management in enclosed reserves in South Africa, a whole series of management practices have grown up on which decisions are made. Some of these approaches seem to be making assumptions that are not borne out in practice. Examples include:

- Fynbos vegetation has zero carrying capacity for herbivores.
- Setting stocking rates for herbivores based on look-up tables linked to rainfall levels or using a computer programme to calculate amount of foliage based on standard tree shapes, gives accurate stocking levels. In practice developing techniques to measure the amount of foliage available for browsers for individual reserves may give more accurate data.
- Elephants damage vegetation and massively reduce the availability of forage for other species so should be stocked at no more than 0.35 animals per km². In practice, they may keep the savannah from converting to woodland where most of the forage is then out of reach of the other herbivores and by knocking over trees make additional forage available to those species only feeding below 2m height.
- Direct counts by helicopter are necessary to get accurate counts of game numbers, whereas DISTANCE based transect surveys provide a much more cost-effective method and allow species that cannot be counted from the air, such as Nyala, to also be estimated.

The overall objective of the Opwall surveys in South Africa, which are run in conjunction with WEI, is to develop a manual of best practices for wildlife conservation reserve managers based on the latest scientific data and the results of some of these research projects across the high veld, low veld and fynbos vegetation communities.

2. Itinerary

One week in Somkhanda Reserve (see section 4 for details) followed by a week dive training, diving if already qualified or snorkelling at Sodwana Bay (see section 7 for details). This expedition will start in the Somkhanda game reserve, and finish in Sodwana Bay. International flights will need to be arranged into Durban airport by Friday at 1200hrs and out of Durban airport on Friday after 1600hrs. Internal travel will be costed by the Opwall travel section once the flights have been arranged to ensure transfers to Somkhanda from the airport at the start of the expedition and back from Sodwana Bay to Durban airport at the end of the expedition.

On this option the students will complete an African Wildlife Management course (see section 4) in the first week. In the second week, there are different options depending on your dive experience. If the students are already dive trained or wish to snorkel during this week, then they will be completing an Indian Ocean reef ecology course and section 6 describes this in detail. Alternatively, the students will undertake their PADI training to gain the Open Water qualification.

3. Research Objectives, Activities & Schedule at Somkhanda Reserve

Somkhanda is a 12000ha community-owned game reserve in the Zululand district of KwaZulu Natal. Somkhanda Community Game Reserve is promoted as a flagship project for land restitution and transformation in South Africa, and conservation-based community development as they contribute significantly towards both local and metapopulation conservation management programs and has contributed towards the establishment of viable populations of black rhino and wild dog at various other protected area across Africa. Apart from the healthy rhino and wild dog populations, the Somkhanda Community Game Reserve also offers a safe and stable environment to leopard, lion, spotted hyena, brown
hyena, caracal, serval, elephant, buffalo, giraffe, blue wildebeest, zebra, nyala, bush buck, red duiker and a variety of typical bushveld game.

This is the first year the Opwall teams will be visiting Somkhanda, therefore the main aims for the research are to carry out standardised surveys on the reserve led by the same experienced field naturalist from our in-country partners WEI. In the June to August period each year these data sets have been supplemented during the Opwall survey season. The objectives of the research at this site are:

1) To determine the distribution of herbivores in Somkhanda Game reserve
2) To determine the herbivore carrying capacity of Somkhanda Game reserve
3) To identify habitat selection by various species of herbivore over the year plotted as density maps.
4) To monitor bird community structures across the reserve
5) To measure the human – wildlife interactions and how they can be mitigated

Over the course of the week, the students will complete bush skills training alongside helping with the biodiversity research surveys needed to answer these research questions. Questions 1 - 3 are being answered from the large mammal transect studies which are conducted by vehicle and the position, species name, sex and age of all mammals sighted are recorded. Their angle using a GPS and distance from the transect are noted. The carrying capacity of the reserve (question 2) in terms of impact on woody vegetation is measured from the data collected by the students working in 1ha standard survey plots. Data are gathered on the level of browsing pressure on each tree and shrub using the Walker scale classification, the stem diameter of all woody plants and the amount of woody vegetation using the touch pole techniques. The data to answer question 4 is gathered from early morning bird point counts at a series of standard sites across the management unit. Question 5 will combine data from all survey types with detailed maps of the human activity within the reserve. Students may also be involved in direct monitoring of human activities such as road usage and the presence of roadkill. Data are gathered on the level of browsing pressure on each tree and shrub using the Walker scale classification, the stem diameter of all woody plants and the amount of woody vegetation using the touch pole techniques.

The volunteers will be divided up into groups of a maximum of nine and each will spend half of each day in the large fenced area of the camps having briefings and lectures. The other half of each day will be spent in the bush in vehicles or on foot in groups of nine with an armed guard and a FGASA qualified guide for each group. Thus, some of the students will spend the morning in camp with briefings and lectures followed by the afternoon in the bush, whilst the rest will spend the morning in the bush and the afternoon on briefings and lectures, alternating each day.

The schedule is full but there is time for the students, either individually or in small groups, to prepare a short presentation based around information they have learnt across the week and these presentations will be given on the Thursday evening.
Table 1. Indicative timetable for the week at Somkhanda. Note there may be changes depending on fitness of students, group sizes and numbers, weather conditions or operational problems.

<table>
<thead>
<tr>
<th>Day</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri eve</td>
<td>Introduction to camp and safety rules</td>
<td>Introduction to camp and safety rules</td>
</tr>
<tr>
<td>Sat am</td>
<td>Lecture 1 – An introduction to Africa’s Biodiversity</td>
<td>Vehicle based field visit with briefings about species encountered and safety when encountering these animals</td>
</tr>
<tr>
<td></td>
<td>Workshop 1 – Effects of fire on biodiversity</td>
<td></td>
</tr>
<tr>
<td>Sat pm</td>
<td>Vehicle based field visit with briefings about species encountered and safety when encountering these animals</td>
<td>Lecture 1 – An introduction to Africa’s Biodiversity Workshop 1 – Effects of fire on biodiversity</td>
</tr>
<tr>
<td>Sat evening</td>
<td>Lecture on small and potentially dangerous species – spiders, snakes and scorpions</td>
<td>Lecture on small and potentially dangerous species – spiders, snakes and scorpions</td>
</tr>
<tr>
<td>Sun am</td>
<td>First field trek with armed guard to learn about safety issues and approaching game species</td>
<td>Lecture 2 – South African Birds Workshop 2 – Bird identification and practical survey skills</td>
</tr>
<tr>
<td>Sun pm</td>
<td>Lecture 2 – South African Birds Workshop 2 – Bird identification and practical survey skills</td>
<td>First field trek with armed guard to learn about safety issues and approaching game species.</td>
</tr>
<tr>
<td>Sun eve</td>
<td>Debate on local conservation issues</td>
<td>Debate on local conservation issues</td>
</tr>
<tr>
<td>Mon am</td>
<td>Bird point counts</td>
<td>Lecture 3 – The herbivores of South Africa Workshop 3 – Calculating density estimates and carrying capacities</td>
</tr>
<tr>
<td>Mon pm</td>
<td>Lecture 3 – The herbivores of South Africa Workshop 3 – Calculating density estimates and carrying capacities</td>
<td>Herbivore damage survey (habitat assessment)</td>
</tr>
<tr>
<td>Mon eve</td>
<td>Create elephant ID kits</td>
<td>Create elephant ID kits</td>
</tr>
<tr>
<td>Tue am</td>
<td>Lecture 4 – The predators of South Africa Workshop 4 – Problems with managing closed populations</td>
<td>Bird point counts</td>
</tr>
<tr>
<td>Tue pm</td>
<td>Herbivore damage survey (habitat assessment)</td>
<td>Lecture 4 – The predators of South Africa Workshop 4 – Problems with managing closed populations</td>
</tr>
<tr>
<td>Tue eve</td>
<td>Documentary & discussion</td>
<td>Documentary & discussion</td>
</tr>
<tr>
<td>Wed am</td>
<td>Large mammal transect surveys</td>
<td>Lecture 5 – The elephant Workshop 5 – Reducing human-animal conflict</td>
</tr>
<tr>
<td>Wed pm</td>
<td>Lecture 5 – The elephant Workshop 5 – Reducing human-animal conflict</td>
<td>Large mammal transect surveys</td>
</tr>
<tr>
<td>Wed eve</td>
<td>Presentation preparation</td>
<td>Presentation preparation</td>
</tr>
<tr>
<td>Thur am</td>
<td>Lecture 6 – African conservation and wildlife management</td>
<td>Bird point counts</td>
</tr>
</tbody>
</table>
Workshop 6 – Consumptive vs non-consumptive reserve management

| Thur pm | Lecture 6 – African conservation and wildlife management
Workshop 6 – Consumptive vs non-consumptive reserve management |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbivore damage survey (habitat assessment)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thur eve</th>
<th>Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Friday</th>
<th>Transfer to Sodwana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer to Sodwana</td>
<td></td>
</tr>
</tbody>
</table>

Accommodation will be in a large fenced camp inside the reserve and with stunning views over the Olifants River. Sleeping arrangements will be in single sex dorms and there are flush toilets and hot showers in the camp.

4. African Wildlife Management Course

During the time in camp during the first week, the students will be completing an African Wildlife Management Course that will have direct relevance to the research they are helping with in the field. Each session starts with a 40 – 45-minute lecture and the rest of the time is then spent on a workshop aimed at reinforcing elements of the lectures and applying the knowledge to practical South African examples.

Lecture 1 – An introduction to Africa’s biodiversity
This lecture will outline the term ‘biodiversity’ and what this can mean in different situations to different groups of people. Students will also learn about the biodiversity of Africa and how humans, latitude and other gradients affect biodiversity.

Workshop 1 – Effects of fire on biodiversity
Different fire regime case studies will be presented to the students which they will discuss and compare best method. The practical activity will be an exercise where students are given example vegetation data from savannah plots and asked to determine for each data set, which herbivores would be utilising the grazing/browsing, the fire loads and whether burning would be beneficial.

Keywords
- Biodiversity
- Biogeography
- Fire
- Succession

Lecture 2 – South African birds: how we name, identify and survey their numbers and distribution
This lecture briefly looks at the importance of taxonomy and its role in conservation. It then looks in more detail at the identification of local birds and how survey work is carried out.

Workshop 2 - Students will learn 10 of the commonest bird calls likely to be encountered on the surveys. In addition, they will be taught how to use a GPS to plot routes and range finders to estimate distances will be demonstrated and the students will have to complete a test course using only GPS and estimating distances of target objects.
Keywords
- Classification; Taxonomy; Binomial system; Dichotomous Keys
- Identification

Lecture 3 – Adaptation: the herbivores of South Africa
This lecture will give an overview of Africa’s main ecosystems and how herbivores are adapted for survival. There will also be a brief description of Kruger National Park and its importance in conservation. The lecture will concentrate on the mammalian herbivores and their ecology, behaviour and identification.

Workshop 3 - The requirements in terms of browse or grazing amounts, minimum herd sizes and distance from water that each of the species routinely feeds will be discussed for each of the main ruminant (buffalo, impala, kudu, wildebeest, nyala, giraffe and other antelope species) and non-ruminant (zebra, elephant, rhino, hippo, bush pig, warthog) herbivore species. Students will be given stock density data and asked to estimate what percentage of the browse and grazing capacity was being utilised and what mix of additional browsers and grazers could be added to the reserve.

Keywords
- Ecology; Habitat; Niche; Abiotic; Biotic
- Biome; Ecosystems;
- Adaptation
- Populations; Competition; Interspecific; Intraspecific; Predator Prey; density dependent; independent.
- Behaviour / nutrition

Lecture 4 – Adaption: the predators of South Africa.
This lecture will look at the role of the main predators and how they are adapted for survival. In particular it will focus on the ecology of lions, cheetah and leopards will be looked at in detail.

Workshop 4 – A film on hunting techniques in a savannah environment will be shown. Why reserves are fenced in South Africa and the problems associated with managing closed populations. Determining how many and what types of predators (lion, cheetah, hyena, leopard etc) should be introduced to control the growth of populations.

Keywords
- Ecology; Habitat; Niche; Abiotic; Biotic
- Biome; Ecosystems;
- Adaptation
- Populations; Competition; Interspecific; Intraspecific; Predator Prey; density dependent; independent.
- Behaviour
Lecture 5 – Africa’s iconic animal: The Elephant
This lecture looks at the ecology and behaviour of the world’s largest land mammal. It also considers the role of this iconic animal in tourism and other problems such as the ivory trade and control of elephant populations.

Workshop 5 - How do we define a damage causing animal and who should take responsibility? A hypothetical example will be given of a human wildlife conflict situation and the students will be asked how to best reduce the impacts.

Keywords
- Conservation, Sustainability
- Tourism, trophy hunting, population control, poaching, CITES
- Damage-causing; compensation
- Behaviour

Lecture 6 - African conservation and wildlife management
This lecture compares the consumptive use of game and non-consumptive use of game on game reserves through ecotourism. This lecture will include case studies on the sustainability of hunting and intensive breeding industries.

Workshop 6 – A film discussing intensive breeding and hunting (legal) in conservation will be shown. Students will be asked to justify the role of private land owners in the conservation of rare (sable and roan) and endangered (lion, cheetah, wild dog and rhino) large mammals in South Africa in the context of consumptive and non-consumptive ecotourism.

Keywords
- Ecotourism
- Hunting
- Game breeding
- Conservation

5. Dive Training at Sodwana Bay
For those students going to Sodwana Bay for their second week, there are three options available; doing a PADI Open Water Dive training course, an Indian Ocean Reef Ecology Course (with the practicals done either by diving or snorkelling – see section 6) or if the students arrive with the theory and pool training elements of the Open Water course already completed (Referrals) then they will spend the first part of the week completing the open water dives and the second part of the week on the Reef Ecology Course.

The PADI Open Water course consists of three different elements of learning; dive theory (knowledge development), confined water dives and open water dives. Each component plays its own role in the students’ development to meet the performance requirements and objectives they need to become a qualified diver. Please be aware that as a part of the PADI Open Water Course, all students will be required to complete some basic stamina tests on site. Student divers will need to demonstrate that they can comfortably maintain themselves in water too deep in which to stand by completing a 10-minute swim/float
without using any swimming aids. Students will also have students complete a 200m continuous surface swim or a 300-m swim with mask, fins and snorkel.

For those students who have completed both the dive theory and confined water sessions prior to expedition they can complete their PADI Open Water Referral Course on site. The students will first complete a check dive with their instructor to demonstrate that they still remember and can confidently perform the necessary skills to progress on to complete their open water dives.

Once referral students have successfully completed the final stages of their PADI Open Water course, they will be able to progress on to the Coral Reef Ecology course. Although there will not be enough time to run the full course, referral students will be able to join at a stage where they can get the chance to learn about the application of survey techniques in the marine environment and how that supports the management of coral reefs.

6. Indian Ocean Reef Ecology Course

Table 2 shows an example timetable of the activities that students undertaking the Indian Ocean Coral Reef Ecology Course will complete over the week – please note that timetables and activities are liable to change. The practical element of the reef ecology course can be completed by either diving or snorkelling and it has been designed to complement the content of the lectures. If students are already qualified divers by the time they arrive on site, they will be required to complete a compulsory check dive with a PADI professional at the start of the course. The Indian Ocean Coral Reef Ecology course covers a range of topics suitable to support A-Level biology and geography students over a range of different syllabuses. Lectures will be supported by a mixture of in-water and land-based practicals. In addition to the lectures, students will also be expected to complete a small group task throughout the course of the week. Students will be provided with an information pack at the start of the week, which will give them detailed information about an important topic in coral reef ecology/conservation. On the final afternoon at the end of their stay, they will do a small presentation of their findings to the group in as an imaginative way as possible!

Table 2. An indicative timetable for students completing the Indian Ocean Coral Reef Ecology Course. Note that there will be changes to the itinerary depending on fitness of students, weather conditions or operational issues on site and the exact order of activities throughout the week may differ from the proposed timetable.

<table>
<thead>
<tr>
<th>Day</th>
<th>Lectures</th>
<th>Land-based activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturday</td>
<td>• Introduction to Coral reefs</td>
<td>• Group research project briefing</td>
</tr>
<tr>
<td>Sunday</td>
<td>• Importance of Coral Reefs</td>
<td>• Video analysis</td>
</tr>
<tr>
<td>Monday</td>
<td>• Reef Species and Interactions</td>
<td>• Dune walk</td>
</tr>
<tr>
<td>Tuesday</td>
<td>• Reef Threats and Mitigation Attempts</td>
<td>• Rock pooling</td>
</tr>
<tr>
<td>Wednesday</td>
<td>• Underwater Surveys: Theory and Execution</td>
<td>• ID lecture & workshop</td>
</tr>
<tr>
<td></td>
<td>• Mangroves and Seagrass</td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>• Marine Megafauna</td>
<td>• Assessing a reef on land</td>
</tr>
</tbody>
</table>
Lecture 1: Introduction to Coral Reefs
- Assessing current knowledge of marine ecosystems
- How the world learns about science and the environment
- The concept of charismatic species
- Introduction to hard and soft corals
- Coral anatomy, feeding and reproduction

Lecture 2: Importance of Coral Reefs
- Discussing how coral reefs are important (biodiversity, productivity etc)
- Furthering examples with fisheries and coastal protection
- How does tourism contribute to importance?
- How coral reefs are distributed globally
- The intermediate disturbance hypothesis

Lecture 3: Reef Species and Interactions
- Defining interaction types
- Discussing competition, predation and symbioses
- Deep dive into parrotfish (discussing their importance and interactions)
- Deep dive into butterflyfish (discussing their importance and interactions)
- Deep dive into damselfish (discussing their importance and interactions)

Lecture 4: Reef Threats and Mitigation Attempts
- Required conditions for coral growth and survival
- Threats to coral reefs
- Outlining ocean acidification, unsustainable fishing practices and phase shifts
- Ecological resilience
- The future of coral reefs

Lecture 5: Underwater Surveys: Theory and Execution
- What is marine monitoring, and what considerations need to be made?
- An introduction to the benthic environment (benthos)
- How can the benthic environment be surveyed?
- An introduction to the midwater environment (fish)
- How can the benthic environment be surveyed?

Lecture 6: Mangroves & Seagrasses
- Introduction to mangroves
- Adaptations of mangroves to their environment
- Introduction to seagrasses
- Adaptations of seagrasses to their environment
- Ecosystem functions of mangroves and seagrasses
Lecture 7: Marine Megafauna

- Introduction to megafauna
- Outlining sharks and their ecosystem functions
- Whales & pinnipeds, and what separates them?
- How have turtles adapted to the ocean?
- The importance that megafauna play in conservation

ID Lecture 1: Invertebrates and Corals

- Sponges
- Non-sessile invertebrates
- What is an invertebrate / coral?
- Defining ecosystem architects
- Coral morphologies

ID Lecture 2: Fish

- There is no such thing as a fish!
- How do we describe fish?
- The different body shapes
- How to describe markings / patterning
- Examples of local reef fish

7. Academic Benefits

Apart from the most obvious values of going on an expedition such as contributing towards conservation, the physical challenge and adventurous travel, the experience can also benefit a student by increasing their chances of gaining entry to university or being successful in a job application and impressing at interview. This can be achieved in many ways, but it will often depend upon which country and educational system a learner is from. Common to most countries the experience will:

Enhance their understanding of course syllabuses Allow learners to gain specific qualifications such as:
Research Qualifications e.g. Extended Essays for IB and UK EPQs University Course Credits in US Creativity, Action and Service (CAS) for IB Universities Award from ASDAN

IRPs or Individual Research Projects

In the last few years an increasing number of students joining our research programmes take this opportunity to undertake IRPs. These research projects take many different forms, but what they all have in common is the need to pose and answer a research question. Examples of these include Extended Project Qualification (EPQ), Extended Essay (EE) for IB, as well as many different projects specific to many education systems worldwide.

We can support the dissertation essay style research question; however individual scientific investigations (in which students design and collect their own data) are more difficult to facilitate given the short amount of time students are present on-site.
It is a fantastic opportunity for a student to witness first-hand many of the aspects of their research question.
and, in many cases, they will have access to samples of past datasets for their project. Students may also have the opportunity to talk with the actual scientists involved which will give them a convincing ‘slant’ to the way in which they answer their research question.

Much of the research they will be able to get involved with is specific to their expedition location. The projects that students will encounter range from students helping to collect data through to working and learning alongside the scientists where primary data collection by school students is less practical or more difficult.

For success with IRPs, careful planning is needed by the student and a lot of the work will be done prior to their expedition. They will need close guidance from their school supervisor and the scientists in the field need to be briefed so that support can be provided where they can. We have now developed an application system to ensure that the student will be able to realistically undertake such a project, that their choice of topic is appropriate to their expedition site, the science staff ‘on-site’ are aware of the project and where practical can assist in a constructive way before, during and after their expedition.

For more information visit the Opwall website - www.opwall.com/schools/educational-benefits/independent-research-project/

Relevance of their expedition to the syllabus

Specific specifications for Biology, Geography and Environmental Studies have been reviewed for over 10 examination boards from around the world to see how relevant a student’s expedition experiences will be when related to what they learn in their classroom. The tables in the appendix section show how this matching works although not all topics are relevant to all sites so have been grey-out.

8. Additional Reading

Electronic media
BBC Last Chance to See, Episode 3: Northern White Rhino. Available online at http://www.bbc.co.uk/programmes/b00mvbbx
BBC Life of Mammals, Episode 4: Plant Eaters
BBC Life of Mammals, Episode 5: Meat Eaters
BBC Planet Earth, Episode 7: Great Plains
The Secret Life of Elephants. BBC Video. Available from NHBS - www.nhbs.com/
BBC’s Africa Documentary